
SSS Node Object Specification
Release Version 3.0.1
29 MAR 2004

Scott Jackson, PNNL
David Jackson, Ames Lab

Brett Bode, Ames Lab

Scalable Systems Software Node Object Specification

Status of this Memo

This is a specification of the node object to be used by Scalable Systems Software
compliant components. It is envisioned for this specification to be used in conjunction
with the SSSRMAP protocol with the node object passed in the Data field of Requests
and Responses. Queries can be issued to a node-cognizant component in the form of
modified XPATH expressions to the Get field to extract specific information from the
node object as described in the SSSRMAP protocol.

Abstract

This document describes the syntax and structure of the SSS node object. This node
model takes into account various node property categories such as whether it represents
a configured, available or utilized property.

Table of Contents

Scalable Systems Software Node Object Specification.. 1
Table of Contents.. 1
1. Introduction... 2

1.1 Goals ... 2
1.2 Examples... 2

1.2.1 Simple Example .. 2
1.2.2 Elaborate Example .. 3

2. Conventions used in this document .. 3
2.1 Keywords .. 3
2.2 Table Column Interpretations ... 4
2.3 Element Syntax Cardinality .. 5

3. The Node Model ... 5
4. Node Element.. 5

4.1 Uncategorized Node Properties .. 5
4.1.1 Simple Node Properties .. 5
4.1.2 Extension Element .. 6

4.2 Property Categories... 7
4.2.1 Configured Element .. 7

4.2.2 Available Element... 7
4.2.3 Utilized Element ... 7

4.3 Categorized Node Properties .. 8
4.3.1 Consumable Resources ... 8
4.3.2 Resource Element ... 9

Appendix A... 11
Units of Measure Abbreviations ... 11

1. Introduction

This specification proposes a standard XML representation for a node object for use by
the various components in the SSS Resource Management System. This object will be
used in multiple contexts and by multiple components. It is anticipated that this object
will be passed via the Data Element of SSSRMAP Requests and Responses.

1.1 Goals

There are several goals motivating the design of this representation.

It needs to be inherently flexible. We recognize we will not be able to exhaustively
include the ever-changing node properties and capabilities that constantly arise.

The same node object should be used at all stages of its lifecycle. This object needs to
distinguish between configured, available and utilized properties of a node.

Its design takes into account the properties and structure required to function in a meta or
grid environment. It should eventually include the capability of resolving namespace and
locality issues, though the earliest versions will ignore this requirement.

One should not have to make multiple queries to obtain a single piece of information --
i.e. there should not be two mutually exclusive ways to represent a node resource.

Needs to support resource metric as well as unit specifications.

1.2 Examples

1.2.1 Simple Example

This example shows a simple expression of the Node object.

<Node>
 <NodeId>Node64</NodeId>

 <Configured>
 <Processors>2</Processors>
 <Memory>512</Memory>
 </Configured>
</Node>

1.2.2 Elaborate Example

This example shows a more elaborate Node object.

<Node>
 <NodeId>64</NodeId>
 <Name>Netpipe2</Name>
 <Feature>BigMem</Feature>
 <Feature>NetOC12</Feature>
 <Opsys>AIX</Opsys>
 <Arch>Power4</Arch>
 <Configured>
 <Processors>16</Processors>
 <Memory units=”MB”>512</Memory>
 <Swap>512</Swap>
 </Configured>
 <Available>
 <Processors>7</Processors>
 <Memory metric=”Instantaneous”>143</Memory>
 </Available>
 <Utilized>
 <Processors wallDuration=”3576”>8</Processors>
 <Memory metric=”Average” wallDuration=”3576”>400</Memory>
 </Utilized>
</Node>

2. Conventions used in this document

2.1 Keywords

The keywords “MUST”, “MUST NOT”, “REQUIIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to
be interpreted as described in RFC2119.

2.2 Table Column Interpretations

In the property tables, the columns are interpreted to have the following meanings:

Element Name: Name of the XML element (xsd:element)

Type: Data type defined by xsd (XML Schema Definition) as:

String xsd:string (a finite length sequence of printable characters)
 Integer xsd:integer (a signed finite length sequence of decimal digits)
 Float xsd:float (single-precision 32-bit floating point)
 Boolean xsd:boolean (consists of the literals “true” or “false”)

DateTime xsd:dateTime (discreet time values are represented in ISO 8601
extended format CCYY-MM-DDThh:mm:ss where "CC"
represents the century, "YY" the year, "MM" the month and "DD"
the day. The letter "T" is the date/time separator and "hh", "mm",
"ss" represent hour, minute and second respectively. This
representation may be immediately followed by a "Z" to indicate
Coordinated Universal Time (UTC) or, to indicate the time zone,
i.e. the difference between the local time and Coordinated
Universal Time, immediately followed by a sign, + or -, followed
by the difference from UTC.)

Duration xsd:duration (a duration of time is represented in ISO 8601
extended format PnYnMnDTnHnMnS, where nY represents the
number of years, nM the number of months, nD the number of
days, 'T' is the date/time separator, nH the number of hours, nM the
number of minutes and nS the number of seconds. The number of
seconds can include decimal digits to arbitrary precision.)

Description: Brief description of the meaning of the property

Appearance: This column indicates whether the given property has to appear

within the parent element. It assumes the following meanings:

 MUST This property is REQUIRED when the parent is specified.
 SHOULD This property is RECOMMENDED when the parent is specified.
 MAY This property is OPTIONAL when the parent is specified.

Compliance: The column indicates whether a compliant implementation has to

support the given property.

MUST A compliant implementation MUST support this property.
SHOULD A compliant implementation SHOULD support this property.

 MAY A compliant implementation MAY support this property.

Categories: Some properties may be categorized into one of several categories.
Letters in this column indicate that the given property can be
classified in the the following property categories.

 C This property can be encompassed in a Configured element.
 A This property can be encompassed in an Available element.
 U This property can be encompassed in a Utilized element.

2.3 Element Syntax Cardinality

The cardinality of elements in the element syntax sections may make use of regular
expression wildcards with the following meanings:

 * Zero or more occurrences
 + One or more occurrences
 ? Zero or one occurrences

The absence of one of these symbols implies one and only one occurrence.

3. The Node Model

The primary element within the node model is a node. One can speak of some node
properties as being a configured, available or utilized property of the node.

4. Node Element

The Node element is the root element of a node object and is used to encapsulate a node.

• A node object MUST have exactly one Node element.
• A compliant implementation MUST support this element.
• A node MUST specify one or more Node Properties.

4.1 Uncategorized Node Properties

Uncategorized Node Properties are properties that apply to the node as a whole and do
not need to be distinguished between being configured, available or utilized. These
include the node id and other optional node properties.

4.1.1 Simple Node Properties

Simple (unstructured) node properties are enumerated in Table 1.

Table 1 Simple Node Properties
Element Name Type Description Appearance Compliance
NodeId String Node identifier MUST MUST
Name String Node name or

pattern.

MAY MAY

OpSys String Operating
System

MAY SHOULD

Arch String Architecture MAY SHOULD

Description String Description of
the node

MAY MAY

State String State of the node.
Valid states may
include
“Offline”,
“Configured”,
“Unknown”,
“Idle”, “Busy”.

SHOULD MUST

Features String Arbitrary named
features of the
node (comma-
delimited string).

MAY SHOULD

4.1.2 Extension Element

The Extension element provides a means to pass extensible properties with the node
object. Some applications may find it easier to deal with a named extension property than
discover and handle elements for which they do not understand or anticipate by name.

• A compliant implementation MAY support this element.
• This element MUST have a name attribute that is of type String and represents the

name of the extension property. A compliant implementation MUST support this
attribute if this element is supported.

• This element MAY have a type attribute that is of type String and provides a hint
about the context within which the property should be understood. A compliant
implementation SHOULD support this attribute if this element is supported.

• The character content of this element is of type String and is the value of the
extension property.

The following is an example of an Extension element:

<Extension type=”Chemistry” name=”Software”>NWChem</Extension>

4.2 Property Categories

Certain node properties (particularly consumable resources) need to be classified as being
in a particular category. This is done when it is necessary to distinguish between a
property that is configured versus a property that is available or utilized. For example, a
node might be configured with 16 processors. At a particular time, 8 might be utilized, 7
might be available and 1 disabled. When a node property must be categorized to be
understood properly, the property MUST be enveloped within the appropriate Property
Category Element.

4.2.1 Configured Element

A configured node property reflects resources pertaining to the node that could in
principle be used though they may not be available at this time. This information could
be used to determine if a job could ever conceivably run on a given node.

• A compliant implementation MUST support this element.

The following is an example of using Configured Properties:

<Configured>

<Processors>16</Processors>
<Memory units=”MB”>512</Memory>

</Configured>

4.2.2 Available Element

An available node property refers to a resource that is currently available for use.

• A compliant implementation SHOULD support this element.

The following is an example of specifying available properties:

<Available>

<Processors>7</Processors>
<Memory units=”MB”>256</Memory>

</Available>

4.2.3 Utilized Element

A utilized node property reflects resources that are currently utilized.

• A compliant implementation SHOULD support this element.

The following is an example of specifying utilized properties:

<Utilized>

<Processors>8</Processors>
<Memory metric=”Average”>207</Memory>

</Utilized>

4.3 Categorized Node Properties

4.3.1 Consumable Resources

Consumable Resources are a special group of node properties that can have additional
attributes and can be used in multiple categories. In general a consumable resource is a
resource that can be consumed in a measurable quantity.

• A consumable resource MUST be categorized as being a configured, available or
utilized node property by being a child element of a Configured, Available or
Utilized element respectively.

• A consumable resource MAY have a units attribute that is of type String that
specifies the units by which it is being measured. If this attribute is omitted, a
default unit is implied. A compliant implementation MAY support this attribute if
the element is supported.

• A consumable resource MAY have a metric attribute that is of type String that
specifies the type of measurement being described. For example, the measurement
may be a Total, an Average, a Min or a Max. A compliant implementation MAY
support this attribute if the element is supported.

• A consumable resource MAY have a wallDuration attribute of type Duration that
indicates the amount of time for which that resource was used. This need only be
specified if the resource was used for a different amount of time than the
wallDuration for the step. A compliant implementation MAY support this
attribute if the element is supported.

• A consumable resource MAY have a consumptionRate attribute of type Float that
indicates the average percentage that a resource was used over its wallDuration.
For example, an overbooked SMP running 100 jobs across 32 processors may
wish to scale the usage and charge by the average fraction of processor usage
actually delivered. A compliant implementation MAY support this attribute if the
element is supported.

A list of simple consumable resources is listed in Table 2.

Table 2 Consumable Resource Node Properties

Element Name Type Description Appearance Compliance Categories
Processors Integer Number of

processors.
MAY MUST CAU

Memory Float Amount of
memory.

MAY SHOULD CAU

Disk Float Amount of
disk.

MAY SHOULD CAU

Swap Float Amount of
virtual
memory.

MAY MAY CAU

Network Float Amount of
network.

MAY MAY CAU

The following are two examples for specifying a consumable resource:

<Memory metric=”Max” units=”GB”>483</Memory>

<Processors wallDuration=”1234” consumptionRate=”0.63”>4</Processors>

4.3.2 Resource Element

In addition to the consumable resources enumerated in the above table, an extensible
consumable resource is defined by the Resource element.

• A compliant implementation SHOULD support this element.
• This element MAY appear zero or more times within a given set of node

properties.
• Like the other consumable resources, this property MUST be categorized as a

configured, available or utilized property by being encompassed in the
appropriate elements.

• This element is of type Float.
• It shares the other same properties and attributes as the other consumable

resources but it requires an additional name (and optional type) attribute to
describe it.

• This element MUST have a name attribute of type String that indicates the type of
consumable resource being measured. A compliant implementation MUST
support this attribute if the element is supported.

• This element MAY have a type attribute of type String that distinguishes it within
a general resource class. A compliant implementation SHOULD support this
attribute if the element is supported.

The following are two examples for specifying a Resource element:

<Resource name=”License” type=”MATLAB”>1</Resource>

<Resource name=”Telescope” type=”Zoom2000” wallDuration=”750”
metric=”KX”>10</Resource>

Appendix A

Units of Measure Abbreviations

Abbreviation Definition Quantity
B byte 1 byte

KB Kilobyte 2^10 bytes
MB Megabyte 2^20 bytes
GB Gigabyte 2^30 bytes
TB Terabyte 2^40 bytes
PB Petabyte 2^50 bytes
EB Exabyte 2^60 bytes
ZB Zettabyte 2^70 bytes
YB Yottabyte 2^80 bytes
NB Nonabyte 2^90 bytes
DB Doggabyte 2^100 bytes

